
Devin Coughlin
Bor-Yuh Evan Chang

We present a generic analysis approach to the imperative relationship update problem, in
which destructive updates temporarily violate a global invariant of interest. Such invariants
can be conveniently and concisely speci!ed with dependent re!nement types, which are
efficient to check #ow-insensitively. Unfortunately, while traditional #ow-insensitive type
checking is fast, it is inapplicable when the desired invariants can be temporarily broken. To
overcome this limitation, past works have directly ratcheted up the complexity of the type
analysis and associated type invariants, leading to inefficient analysis and verbose
speci!cations. In contrast, we propose a generic lifting of modular re!nement type analyses
with a symbolic analysis to efficiently and effectively check concise invariants that hold
almost everywhere. The result is an efficient, highly modular #ow-insensitive type analysis to
optimistically check the preservation of global relationship invariants that can fall back to a
precise, disjunctive symbolic analysis when the optimistic assumption is violated. This
technique permits programmers to temporarily break and then re-establish relationship
invariants—a #exibility that is crucial for checking relationships in real-world, imperative
languages. A signi!cant challenge is selectively violating the global type consistency
invariant over heap locations, which we achieve via almost type-consistent heaps. To
evaluate our approach, we have encoded the problem of verifying the safety of re#ective
method calls in dynamic languages as a re!nement type checking problem. Our analysis is
capable of validating re#ective call safety at interactive speeds on commonly-used
Objective-C libraries and applications.

Abstract

Fissile Type Analysis: Modular Checking of
Almost-Everywhere Invariants

Problem: Imperative Updates
Violate Flow-Insensitive Types

def update(s : Str, o : Obj | r2 s)
this.sel = s
this.obj = o

Evaluation: Re!ective Method
Call in Objective-C

Goal: Verify Re!ective Method
Call with Dependent Types

class Callback
 def call()

 this.obj.[this.sel]()

 var sel : Str
 var obj : Obj | r2 sel

Fissile Type Analysis

Split Heap Into Two Regions In
Symbolic Analysis

Approach: Intertwined Type and
Flow Analysis

Dependent type speci!es
required relationship:

obj must r2 (“respond to”)
method named in sel

Re!ective call dispatches
to method with name

stored in sel
on object stored in obj

Soundness: Concretization of
Base Types

symbolic !ow analysis

types violated

type analysis

type analysis

types restored
type analysis

symbolic !ow analysis

types violated

types restored

Type error: old obj may
not respond to new sel

Type error is false alarm: next
instruction restores type

Almost type-consistent
okheap: !eld values at worst

only transitively inconsistent
with declared types

Immediately type-
inconsistent heap: !eld

values may be inconsistent
with declared types

this.sel = s

def update(s : Str, o : Obj | r2 s)

this.obj = o

� this : Callback

s : Str
o : Obj | r2 s

eo : Obj | r2 es
es : Str

et : Callback
e� eH okheap

eE this : et

s : es
o : eo

Split type environment into facts about values
and initially type-consistent symbolic memory.

eo : Obj | r2 es
es : Str

et : Callback
e� eH

okheapeE this : et

s : es
o : eo ⇤

Leverage heap type invariant via type-consistent materialization
from okheap.

eo : Obj | r2 es
es : Str

et : Callback
e� eH

okheapeE this : et

s : es
o : eo ⇤

eo : Obj | r2 es
es : Str

et : Callback
e� eH

okheapeE this : et

s : es
o : eo ⇤

Summarize type-consistent storage back into okheap. Requires reasoning
explicitly only about memory locations where type constraint is violated.

eo : Obj | r2 es
es : Str

et : Callback
e� eH okheap

eE this : et

s : es
o : eo

� this : Callback

s : Str
o : Obj | r2 s

Return to type analysis now that heap
consists solely of okheap.

g(B),

8
>>>>><

>>>>>:

(H,a)

�����������

exists o where H(a) = ho,Bi and
¿ for all methods m

o(m) 2 g(B,(p : Tp)!Bret) and
¡ for all fields f

(H,o,o(f)) 2 g(T F
f).

9
>>>>>=

>>>>>;

g(B � RF
1 , · · · ,RF

n),

8
<

:(H,o,v)

������

(H,v) 2 g(B) and
for all refinements Ri

(H,o,v) 2 g(RF
i)

9
=

;

(a) Types domain

eg(B),

8
>>>>>>>>><

>>>>>>>>>:

(Hok,Hmat,a)

���������������

exists o where Hok Hmat (a) = ho,Bi and
¿ for all methods m

o(m) 2 g(B,(p : Tp)!Bret) and
¡ for all fields f

f 2 dom(o) and if a 2 dom(Hok) then
(H,o,o(f)) 2 eg(T F

f).

9
>>>>>>>>>=

>>>>>>>>>;

eg(B � RF
1 , · · · ,RF

n),

8
><

>:
(Hok,Hmat,v)

�������

(H,v) 2 eg(B) and
for all refinements Ri

(Hok Hmat ,o,v) 2 g(RF
i)

9
>=

>;

(b) Symbolic domain

Figure 5. Concretization of an object base type B = {var f : Tf , def m(p : Tp)!Bret} in the types and symbolic domains. In the symbolic
domain, values stored in the fields of an object in Hok must not be immediately type-inconsistent; values stored in the fields of an object in
Hmat are not constrained. The shaded region highlights the key difference between the concretizations.

not only the value but also the entire heap reachable from that object.
As we show in Figure 5a, the concretization g(B) of an object type
B = {var f : Tf , def m(p : Tp)!Bret} yields a set of pairs of heaps
and values (addresses). The concretization requires that the address
point to an object o which ¿ has suitable method implementations
(i.e., constrained by the concretization of the method signature
(p : Tp)!Bret on an object of type B) for each method m in the
object type and ¡ has suitable field values for each declared field
f of type T F

f . We adorn the type with its storage class, F , to make
clear that it is a field type dependent on other fields.

The key property of concretization in the type domain is that
the concretization of a field type T F = B � RF

1 , · · · ,RF
n is mutually

inductively defined with that for base types and thus constrains the
entire heap reachable from that field, in addition to the other fields
of the object. This concretization yields a heap-object-value triple
where the heap and value are constrained by the concretization of the
base type and the entire triple is constrained by the concretization
of each of the field refinements RF

i . Because these refinements are
dependent refinements, they may constrain other fields of the object
in addition to the value of the field in question. For example, a
heap-object-value triple in the concretization of a field refinement
respondsTo g would constrain the g field of the object to store
a string with name m that is a valid method for the (potentially
different) object pointed to by the value. The concretization of a
type environment g(G) is a set of concrete environment-heap (E,H)
pairs where the values stored in local variables are consistent with
the declared types and reachable heaps from the type bindings in G.

Concretization in the symbolic analysis. In contrast to the type
analysis, in the symbolic world part of the heap may be explicitly
materialized—and thus immediately type-inconsistent, leaving the
rest of the heap almost type-consistent. To capture this difference,
the symbolic concretization of an object type yields two heaps: Hok

and Hmat, corresponding to a non-deterministic choice of which
objects are in the almost type-consistent heap and which objects
are materialized and thus may have field values differing from their
declared types. We write eg(B) here to emphasize concretization of
base types in the symbolic domain. The shaded region of Figure 5b
illustrates the key difference: in the symbolic domain, an object’s
fields are only constrained by the concretization of the field types
if the object is in Hok. If the object is in Hmat, the fields are
guaranteed to exist, but the values stored in them are not constrained.
Because concretization of object types is defined inductively, the
concretization can “opt out” of type constraints for the reachable
subheap at each field dereference, depending on the partitioning

of the full heap into Hok and Hmat. Crucially, this definition of
concretization permits pointers from Hok to Hmat and vice-versa.
Note that regardless of which heap an object resides in, its method
implementations are still constrained by their signatures.

The concretization g(eE,eS) of a symbolic state eS = (eG, eH) with
respect to a symbolic environment eE yields a environment-heap pair
(E,H). There must exist a valuation V : SymVal!Values mapping
symbolic values to concrete values and a partitioning of the heap
H = Hok Hmat such that the concretizations of eE, eG, and eH all
agree upon. Symbolic fact maps eG and heaps eH both concretize to a
set of valuation-heap-heap tuples where emp in the symbolic heap
requires both Hok and Hmat be empty whereas okheap requires that
Hmat be empty but Hok can be any heap. The singleton heap formula
concretizes to a singleton in Hmat and is the heap disjoint union
in both Hok and Hmat A symbolic path is a disjunction of singleton
paths eP = eS # ex; its concretization is similar to that of a symbolic
state, except that it yields a triple (E,H,v) where V (ex) = v.

Soundness. The soundness of FISSILE type analysis—and in
particular of handoff and materialization/summarization—depends
on the following key properties of concretization.

At handoff, the analysis requires that the explicitly materialized
heap be empty. The following lemma states that under those condi-
tions (i.e., when the entire heap is Hok), the meaning of base types
in the symbolic domain is the same as the meaning of base types in
the type domain:

Lemma 1 (Equivalence of Typed and Symbolic Base Types).
g(B) =

�
(H,v)

�� (H, ·,v) 2 eg(B)

We rely on this result to show that that the T-SYM-HANDOFF and
SYM-TYPE-HANDOFF (Section 3.5) rules are sound.

To show soundness of the M-MATERIALIZE rule, we rely on a
property about the meaning of base types in the symbolic domain:

Lemma 2 (Type-Consistent Materialization for Types). If (Hok a :
hoa,Bai,Hmat,v) 2 eg(B) then (Hok,Hmat a : hoa,Bai,v) 2 eg(B).

This lemma considers a value v of type B and a heap containing an
object oa of allocated type Ba stored at address a (informally, a is
in v’s reachable heap, otherwise it is uninteresting). If there is one
concretization of B where a is in the almost type-consistent heap
Hok, then the configuration with a moved to the materialized Hmat

is also in its concretization. In essence, moving the storage for a to
the materialized heap will not cause the type of v to change from
the perspective of the symbolic analysis.

Types domain Symbolic domain

When the entire heap is okheap, types have same meaning in the types domain
and the symbolic domain.

benchmark

sizesize false alarmsfalse alarms analysis timeanalysis time

(loc)
re!ective call

sites
!ow-

insensitive
almost-

everywhere
symbolic
sections

maximum
materializations Time

Rate
(kloc/s)

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 7 2 (-71%) 7 1 0.24s 5.3

2716 12 2 0 (-100%) 2 2 0.28s 10.8

3301 28 0 0 (-) 0 0 0.10s 33.0

5289 40 4 1 (-75%) 3 1 0.67s 7.9

14620 68 50 10 (-80%) 59 2 0.50s 27.2

160769 192 82 74 (-10%) 9 1 4.25s 37.8

37327 186 59 38 (-36%) 28 2 2.79s 13.4

60211 207 43 43 (-0%) 0 0 2.49s 24.1

176629 587 87 70 (-20%) 17 1 8.79s 20.1

combined 461080 1327 334 238 (-29%) 125 2 20.09s 23.0

e
t 7! {sel 7! f

sel ⇤ obj 7! g
obj}

e
t 7! {sel 7! es ⇤ obj 7! f

obj}

e
t 7! {sel 7! es ⇤ obj 7! e

o}

• Runs at interactive speeds
• But not too many materializations — case split manageable

Analysis will be effective if types hold almost everywhere — that is, if
programmers violate the #ow-insensitive typing only brie!y.

• Signi!cant improvement in precision
• Multiple simultaneous materializations required (cf. linear locations)

• Speci"cation burden is reasonable

Crucially allow
pointers between

two regions

 okheap

s

o
immediately type-

inconsistent

this

